Мощные резисторы P1-150M и наборы резисторов HP1-82 для применения в силовых электронных модулях

И. Малышев, к. т. н. ¹, Ю. Еремеев ², Е. Мозулякина ³

УДК 621.3 | ВАК 2.2.2

Развитие силовой импульсной полупроводниковой электроники требует соответствующих технических решений в области пассивной электронной компонентной базы. Основные требования, предъявляемые к компонентам силовой пассивной электроники и, в частности, резисторам, – это низкая собственная индуктивность, стойкость как к непрерывным, так и к импульсным нагрузкам, высокие рабочее напряжение и электрическая прочность, а также стойкость к кратковременным перегрузкам по мощности. В статье описаны новые отечественные разработки в области мощных силовых высоковольтных резисторов, применяемых в составе модулей управления электроприводов, защитных устройств и др., а также приведены основные технические параметры таких изделий.

течественные мощные силовые высоковольтные резисторы ранее были мало востребованы ввиду ряда причин, среди которых можно выделить широкую доступность на рынке зарубежных аналогов и, в меньшей степени, изначальное отсутствие разработок в области силовой полупроводниковой электроники. Эти и некоторые другие факторы заставляли разработчиков электроники применять импортную компонентную базу. В настоящее время сложилась ситуация, когда многие импортные компоненты, в том числе для силовой электроники, стали труднодоступны или в принципе невозможны к поставке. Поэтому требуется приоритетная разработка компонентов для целей импортозамещения в ответственных областях техники.

Основные применения силовых высоковольтных резисторов в технике — это электронные модули электроприводов в промышленности, транспорте и сфере ЖКХ, источники питания, коммутационное и защитное оборудование в энергетике и промышленности, испытательное и лабораторное оборудование (рис. 1).

Силовые высоковольтные резисторы — это специальный класс резисторов, предназначенных для работы в комплексе с высоковольтными мощными полупроводниковыми ключами типа MOSFET и IGBT. Поэтому к конструкции и функциональным характеристикам таких

Рис. 1. Области применения высоковольтных силовых резисторов

¹ AO «НПО «ЭРКОН», директор по развитию, min@erkon-nn.ru.

² AO «НПО «ЭРКОН», руководитель группы разработок, eremeev@erkon-nn.ru.

³ AO «НПО «ЭРКОН», руководитель группы развития бизнеса, mozulyakinae@erkon-nn.com.

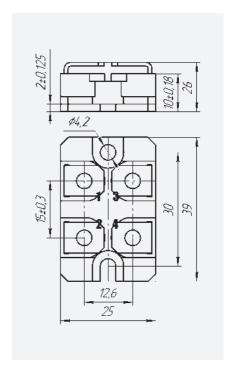


Рис. 2. Габаритный чертеж резистора Р1-150М (исполнения 2, 4) и наборов резисторов НР1-82 (исполнение 1)

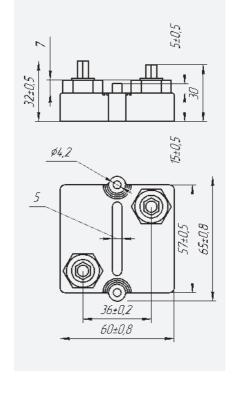


Рис. 3. Габаритный чертеж резистора Р1-150М 600 Вт и 800 Вт

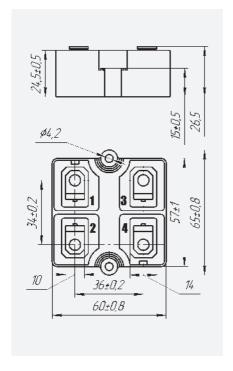


Рис. 4. Габаритный чертеж резистора Р1-150М (исполнения 1 и 3) и наборов резисторов НР1-82 (исполнения 2, 3, 4 и 5)

резисторов предъявляется в совокупности ряд требований, которые не выполнимы в других типах резисторов. Они должны обеспечивать:

- низкие значения собственной индуктивности в широком диапазоне значений номинального сопротивления и высокую стойкость к импульсному сигналу;
- высокие значения предельного рабочего напряжения, иногда повышенную электрическую прочность;
- стойкость к кратковременным перегрузкам по мощности.

Авторами проведен анализ существующих на рынке зарубежных мощных резисторов и выявлены наиболее востребованные изделия, обзор параметров некоторых из которых представлен в табл. 1 [1, 2]. Из отечественных разработчиков-производителей необходимо выделить компанию АО «НПО «ЭРКОН», специализирующуюся на

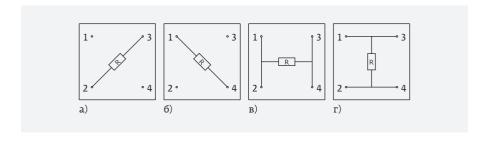


Рис. 5. Конструктивные исполнения резисторов Р1-150М: а - исполнение 1; б - исполнение 2; в - исполнение 3; г - исполнение 4

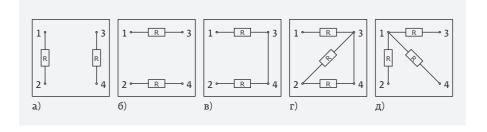


Рис. 6. Конструктивные исполнения наборов резисторов НР1-82: а - исполнение 1; б - исполнение 2; в - исполнение 3; г - исполнение 4; д - исполнение 5

Таблица 1. Параметры зарубежных мощных резисторов

Серия (производитель)	Р _{ном.} , Вт	U _{пред.} , В	R _{hom.} , Om	δR, %	TKC, ppm/°C	Внешний вид
DRTOP50 (Vishay)	50	500	0,046-1:106	±1; ±2; ±5; ±10	±150; ±300	4
RTOP100 (Vishay)	100	1500	0,046-1:106	±1; ±2; ±5; ±10	±150; ±300	
DRTOP100 (Vishay)	100	500	0,046-1:106	±1; ±2; ±5; ±10	±150; ±300	
RTOP200 (Vishay)	200	1500	0,046-1·106	±1; ±2; ±5; ±10	±150; ±300	•
RCEC 400 (Vishay)	400	4000	1-1·106	±5; ±10	±150	- Colo
RCEC 500 (Vishay)	500	5 000	0,47-3·106	±5; ±10	±100; ±300	
RCEC 750 (Vishay)	800	5 000	0,15-1·106	±5; ±10	±100; ±300; ±700	
RCEC 850 (Vishay)	850	5 000	0,47-1·106	±5; ±10	±100; ±300	
RPS250 (Vishay)	250	5000	0,24-1·106	±1; ±2; ±5; ±10	±150; ±250	6/49
RPS500 (Vishay)	500					6
LPS300 (Vishay)	300	5000	0,3-9·105	±1; ±2; ±5; ±10	±150; ±300; ±500	0
LPS600 (Vishay)	600					
LPS800 (Vishay)	800					
LPS1100 (Vishay)	1100	5000	1-1·10³	±1; ±2; ±5; ±10	±150; ±300; ±500	-
UXP-350 (EBG)	350	5000	0,1-0,12, до 1·10 ⁶ по треб.	±5; ±10	±150; ±500	
UXP-600 (EBC)	600	5000	0,1-0,12, до 1,5·106 по треб.	±5; ±10	±150; ±500	0
UXP-800 (EBG)	800	5000	0,1-0,25, до 1·10 ⁶ по треб.	±5; ±10	±150; ±500	0
UXP-2000 (EBG)	2000	5 000	0,15-0,99, до 6⋅10³ по треб.	±5; ±10	±150	Ste
UPT-400 (EBG)	400	5 000	0,5-1·106	±5; ±10	±150	
UPT-600 (EBG)	600	5 0 0 0	0,1-0,2, до 1,5⋅106 по треб.	±5; ±10	±150; ±500	
UPT-800 (EBG)	800	5 000	0,1-0,2; до 1·106 по треб.	±5; ±10	±150; ±500	AID.

Примечание: $P_{\text{ном.}}$ – номинальная мощность рассеяния; $U_{\text{пред.}}$ – предельное рабочее напряжение; $R_{\text{ном.}}$ – диапазон значений номинального сопротивления; δR – допускаемое отклонение сопротивления от номинального значения; TKC – температурный коэффициент сопротивления

Таблица 2. Основные параметры резисторов P1-150M

Р _{ном.} ,	Конструктивное	$U_{\text{пред.}}$,	R _{hom.} ,	δR,	ТКС, ppm/°С в диапазоне	
Вт	исполнение	В	Om*	%	от 20 до 125 °C	от -60 до 20 °C
100	2; 4	1 500	0,1-97,6 100-1·10 ⁶	±1; ±2; ±5; ±10	±250 ±100	±500 ±200
200	2; 4	1500	0,1-97,6 100-1·10 ⁶	±1; ±2; ±5; ±10	±250 ±100	±500 ±200
600	1; 3	5 000	0,1-97,6 100-1,5·10 ⁶	±1; ±2; ±5; ±10	±250 ±100	±500 ±200
600	-	5 000	0,1-97,6 100-1,5·10 ⁶	±1; ±2; ±5; ±10	±250 ±100	±500 ±200
800	-	5 000	0,1-97,6 100-1,5·10 ⁶	±1; ±2; ±5; ±10	±250 ±100	±500 ±200

[‡] По рядам Е24, Е96

Таблица 3. Основные параметры наборов резисторов НР1-82

P _{HOM.} ,	Конструктивное	U _{пред.} ,	$R_{\text{hom.}}$,	δR,	ТКС, ppm/°С в диапазоне	
Вт	исполнение	В	Om*	%	от 20 до 125 °C	от −60 до 20 °C
50	1	500	0,1-97,6 100-1·10 ⁶	±1; ±2; ±5; ±10	±250 ±100	±500 ±200
100	1	500	0,1-97,6 100-1·10 ⁶	±1; ±2; ±5; ±10	±250 ±100	±500 ±200
360 (3×120)	4; 5	5 000	0,1-97,6 100-1,5·10 ⁶	±1; ±2; ±5; ±10	±250 ±100	±500 ±200
500 (2×250)	2; 3	5 000	0,1-97,6 100-1,5·10 ⁶	±1; ±2; ±5; ±10	±250 ±100	±500 ±200

^{*} По рядам E24, E96

производстве резисторов, в настоящее время разрабатывающую и предлагающую образцы резисторов, аналогичных зарубежным. Необходимо отметить, что отечественный производитель достаточно гибок и разрабатывает изделия в соответствии с требованиями заказчика.

Одними из реализованных решений являются мощные резисторы P1-150M и наборы резисторов HP1-82 в стандартном корпусе SOT-227B, являющиеся аналогами резисторов серий RTOP компании Vishay, а также серий UXP и UPT компании EBG.

Основные параметры разрабатываемых резисторов и наборов резисторов представлены в табл. 2 и 3 и на рис. 2–6.

По вопросам приобретения представленных в статье образцов силовых высоковольтных резисторов и наборов

резисторов, а также разработки аналогичной продукции по требованию заказчика можно обратиться в группу развития бизнеса АО «НПО «ЭРКОН» по адресу электронной почты mozulyakinae@erkon-nn.com или телефону +7 831 202-25-52, доб. (261).

С другими изделиями, выпускаемыми АО «НПО «ЭРКОН», можно ознакомиться на официальном сайте: https://www.erkon-nn.ru.

ЛИТЕРАТУРА

- 1. URL: https://www.vishay.com (дата обращения 10.03.2023).
- 2. URL: https://www.ebg-resistors.com (дата обращения 10.03.2023).