Отладочная плата HawkBoard на базе процессора ОМАР-L138. Часть 1

Отладочная плата построена на основе двухъядерного процессора ОМАР-L138 компании Texas Instruments (TI). Она выпускается компанией Innovate Software Solutions [1]. В России плата уже доступна для заказа и стоит примерно \$170 при покупке единичного экземпляра (цена взята с сайта компании «Сканти Рус» [2]).

Игорь ГУК gook_igor@mail.ru

роцессор ОМАР-L138 представляет собой так называемую «систему на кристалле». Он содержит два ядра — ARM926 и DSP C674х, а также всю необходимую периферию для создания одноплатных компьютеров: набор последовательных и параллельных интерфейсов, модули поддержки аудио и видео, часы реального времени и т.д. Функциональная схема процессора представлена на рис. 1. Предназначение процессора — реализация всевозможных промышленных контроллеров, систем управления, пультов, измерительных и медицинских приборов, коммуникационных устройств. Более подробную информацию можно получить, зайдя по ссылке [3].

Отладочная плата HawkBoard [4] предназначена в первую очередь для быстрого освоения процессора OMAP-L138. Общий вид платы с обозначением всех интерфейсных разъемов (за исключением разъема для подключения SD/MMC, который находится с обратной стороны платы в районе USB-портов) показан на рис. 2.

Основные характеристики платы:

- 1. Процессорная часть:
 - Малопотребляющий процессор ОМАР-L138: RISC-ядро 300 МГц ARM926EJ-STM, DSP-ядро 300 МГц C674x, встроенный модуль RTC.
- 2. Память:
 - 128 Мбайт 150 МГц DDR2 SDRAM;
 - 128 Мбайт NAND Flash;
- Один слот для подключения SD/MMC.
- 3. Интерфейсы:
- один последовательный порт RS-232;
- один порт Fast Ethernet (10/100 Мбит/с);
- один порт USB Host (USB 1.1);
- один порт USB OTG (USB 2.0);

- один порт SATA (3 Гбит/с);
- два видеопорта: VGA (15-контактный D-SUB) и композитный вход (RCA);
- два аудиопорта: линейный вход и линейный выход.
- Возможность дополнительного расширения функционала (разъем расширений):
 - VPIF;
 - UPP;
 - PRU;
 - LCDC;
 - UART (x2);
 - SPI (x2);
 - $I^{2}C(x1);$
 - eCAP;
 - eHRPWM;
 - GPIO.
- 5. Программная поддержка:
 - первичный загрузчик U-Boot;
 - пакет поддержки Linux.

Рис. 2. Общий вид отладочной платы HawkBoard

На рис. 3 представлена функциональная схема платы. Видно, что это готовый маленький компьютер, подключив к которому клавиатуру и мышь (через USB-разветвитель на порту USB Host), а также монитор, разработчик получает полноценную Linuxмашину, так как в память NAND Flash, размещенную непосредственно на отладочной плате, уже загружены образы ядра и файловой системы. Возможность установки операционных систем Linux или Windows CE, а также наличие встроенного Ethernet и других стандартных интерфейсов позволяет решать любые задачи, доступные обычному персональному компьютеру (ПК).

Компания Innovate Software Solutions предоставляет все исходные коды и весь необходимый инструментарий для сборки собственного ядра и файловой системы, а также для разработки своих собственных приложений.

Данная отладочная плата может стать не только хорошим выбором для разработки программного обеспечения на процессоре OMAP-L138, но и готовым процессорным модулем при реализации конечных изделий, что значительно сократит временные и материальные затраты на разработку и производство. Например, плата может быть с успехом использована при проектировании прикроватных мониторов пациентов, пультов управления систем безопасности и пожаротушения, измерительных приборов, пультов управления станками ЧПУ, медицинских приборов, промышленных контроллеров, оконечных устройств коммуникации и т.д.

Особо следует отметить, что этот проект интенсивно развивается. Уже сейчас доступны модули в индустриальном исполнении [5], облегченные варианты HawkBoard [6], а также модули на базе процессора AM1808 [7], который программно совместим с OMAP-L138: добавлено несколько интерфейсов, удалено ядро DSP, а конструктивно новый процессор выполнен в индустриальном исполнении. (Более подробно о новом процессоре можно узнать в [8]).

Начать работать с отладочной платой очень просто. Подключите плату с процессором OMAP-L138 к ПК по СОМ-интерфейсу, а сетевым кабелем — к локальной сети. Можно подсоединить VGA-монитор, а также клавиатуру и мышь (через USB-разветвитель, подключенный к разъему USB-Hosh на плате). На базовом ПК с операционной системой Windows необходимо установить следующее программное обеспечение:

- терминальную подпрограмму;
- fttp-сервер.

В качестве терминальной программы рекомендуется использовать Tera Term Pro [9], a fttp-сервером может служить PumpKIN [10].

Настройка терминальной программы заключается в установлении параметров СОМпорта. Они показаны на рис. 4.

Запустите терминальную программу, после чего подайте питание на плату и немного подождите. В память NAND Flash платы уже прошиты образы ядра и файловой системы, а встроенный загрузчик настроен на корректную загрузку. Загрузка происходит в несколько этапов. Вначале запускается встроенный загрузчик, который производит минимальную конфигурацию процессора и передает управление программе UBL (User Boot Loader). Программный код загрузчика UBL пишется непосредственно разработчиком под конкретную задачу. Разработчик производит окончательную настройку всей периферии процессора, а затем загружает программу U-boot, которая является загруз-

Рис. 4. Настройка параметров СОМ-порта

File Edit Setup	Web	Control	Window Help						
									2
[BHawkBoard	/1#	18 -1							
dewse-se-a	2	0	0	2048	Nov	18	2009	bin	
drammerat	5	0	0	2600	Jan.	1	00:00	dev	
druwr-wr-x	3	0	0	1024	Nev	17	1009	eto	
druxe-xr-x	- 2	0	0	2048	Nov	3	2009	110	
LEWICENCEWN	1	0	0	11	Jan	5	2010	linuxre ->	bin/busybox
drex	2	0	0	12288	Jan	5	2010	lost+found	
drawr-xr-x	5	0	0	1024	Nev	20	2009	media	
dr-xe-xr-x	39	0	0	0	Jan	1	00:00	proc	
drwxr-xr-x	2	0	0	1024	0et	31	2009	root	
drwxr-xr-x	2	0	0	1024	Ö ct	31	2009	sbin	
drwar-ar-z	11	0	0	0	Jan	1	00:00	11.2.1	
druxruxrut	2	0	0	40	Jan	1	00:00	Lop	
druxr-xr-x	6	0	0	1024	Nov	17	2009	WFT	
[BHawkBoard	/1#								
< 10 million (1997)	1.0.0								•

Рис. 6. Результат выполнения команды \$ls -1

Рис. 8. Консоль настройки U-boot загрузчика

Tera Terri Web 3.1 - COHO VI	× Lite
Fie fulk setup web control wondaw	Het.
Housting /proc	: (SUCCESS)
Nosating /ays	: [SWCCE35]
Mounting /dev	; [SWCCE33]
Mounting /dev/pts	# [##CCESS]
Enabling hot-plug	: (SUCCESS)
Populating /dev [SUCCESS]	: etb0: attached PHY driver [Generic PHY] (mii_bum:phy_add
Mounting other filesystems	# (BRCCEBB)
Starting syslogd	: [SWCCE33]
Setting Local and Eth0 Into	strace : Jan 1 00:00:04 MaskScard sysley.info sysleyd star
System initialization comple	ite.
Please press Enter to active	ate this consolt.
Jan 1 00:00:08 NavkScard de	MEMOR.info init: starting pid 454, tty '': '-/bin/sh'
Setting shell environment	ME
- Fath	
- Aliases	
Ponet	
(Blaskfoard /]#	2
4101	

чиком Linux, то есть непосредственно загружает образы ядра и файловой системы. Загрузчик U-boot после выполнения своих функций передает управление ядру Linux.

Загрузка заканчивается появлением в терминальной программе приглашения нажать клавишу «Ввод»: "Please, press Enter to activate this console". Выполните требование, и вы окажетесь в консоли операционной системы Linux (рис. 5).

Убедиться в том, что мы имеем полноценную среду Linux, можно введя в консоли какую-нибудь команду, например:

\$ls -1

Это команда просмотра папок и файлов. Результат ее работы показан на рис. 6.

Следующий этап освоения платы HawkBoard — загрузка альтернативного варианта ядра и файловой системы. Одним из способов может быть загрузка образов через fttp-соединение. Для этого необходимо запустить программу fttp-сервера PumpKIN и в настройках (кнопка Options) определить папку, где расположены образы файловой системы и ядра, как это показано на рис. 7.

Скачать образы ядра и файловой системы можно по ссылке [11], это файлы "ulmage_v1" и "ramdisk_v1.gz" соответственно.

Теперь перезагрузите отладочную плату HawkBoard, для чего выключите и снова включите питание. Начнется загрузка — этот процесс будет отображаться в терминале Tera Term Pro. Когда появится сообщение "Hit any key to stop autoboot", нажмите произвольную клавишу: загрузка прекратится и появится возможность настроить параметры U-boot (рис. 8).

Введите команду:

\$printenv

Она позволяет просмотреть все переменные окружения. Результат ее работы показан на рис. 9.

Для настройки режима загрузки образов ядра и файловой системы по fttp-соединению необходимо определить переменные окружения "bootargs", "serverip" и "ipaddr". Эта операция выполняется следующими командами:

\$setenv bootargs "mem=128M console=tty\$2,115200n8 root=/dev/ram0 rw initrd=0xc1180000,4M"
\$setenv serverip <PC ipaddress>
\$setenv ipaddr <board ipaddress>

Здесь <PC ipaddress> — это адрес ПК, где запущен fttp-сервер; <board ipaaddress> — это адрес, присваиваемый отладочной плате.

41

Texts Texts Web 3.1 - COMD VT	ALC: N
Pie Elik Setap Web Cantral Window Help	
www.costs.org > printeny	
postergs-mem-126H consule-tty52,115100m8 root-/dev/rmm6 rv imitrd=0xc1180000,8H	
sostewithend read.c 0xc1100000 Cx400000 0x900000;mead read.c 0xc0700000 Cx200000	0x2000001
sootdelay=3	
seadcate=115200	
bootflie-"ulmdge"	
thadde=Cate1ta0t12tfate0	
erver1p-150,168,12,113	
peddc=192.160.12.50	
tdin-serial	
rtdout-serial	
stder=serial	
Mer=0-Boot 2009.03 (Dee 22 2000 - 10:04:02)	
Invironment size: 389/131068 bytes	100
awd.oard.org >	
	200

Рис. 9. Переменные окружения U-boot

E Hers hers web 3.1 - Covo VI	to a
Pile fill Selap helb Control Window Helt	
Exclamate state: 189/131048 lotas	-
hashboard.org > setomy bootargs "mam=1200 possois=try62,11530000 root=/dev/ram0 rw initrd=Ose100000,45 hashboard.org > setomy serveris 109,150,0,101 hashboard.org > setomy initrd=10,0,0,00	t
hashboard.org > sevence having Environment to Hildb	
Resting to Mand doon	
hashboard.org >	1.

Рис. 10. Настройка переменных окружения U-boot

Рис. 12. Отображение процесса загрузки в tftp-сервере

Теперь можно сохранить произведенные настройки командой:

\$saveenv

Это позволит при повторном включении отладочной платы не вводить параметры заново. Однако рекомендуется запомнить старое значение переменной "bootargs", которое определяло режим загрузки с NAND Flash, чтобы при необходимости его можно было восстановить.

Пример ввода команд настройки окружения показан на рис. 10.

Загрузка образов в оперативную память платы по fttp-соединению выполняется командами:

\$tftp c0700000 uImage_v1
\$tftp c1180000 ramdisk_v1.gz

Процесс загрузки будет отображаться как в терминале (рис. 11), так и в fttp-сервере (рис. 12). И наконец, старт загрузки операционной системы Linux:

\$bootm c0700000

Начнется загрузка операционной системы Linux, как это показано на рис. 13.

После этого появится приглашение ввести имя пользователя. Необходимо набрать "root" и нажать клавишу «Ввод», и вы окажетесь в командной строке OC Linux (рис. 14).

В следующих статьях будут рассмотрены вопросы создания собственного дистрибутива Linux для данной платы.

Литература

- 1. http://www.innovatesolutions.net/company
- 2. http://www.scanti.ru/
- 3. http://focus.ti.com/docs/prod/folders/print/ omap-l138.html
- 4. http://www.innovatesolutions.net/products/ hawkboard

Рис. 11. Отображение процесса загрузки в терминале

Рис. 13. Загрузка альтернативной сборки ОС Linux

Рис. 14. Командная строка Linux

- 5. http://www.innovatesolutions.net/products/ innovate-industrial-omap-l-138
- 6. http://www.innovatesolutions.net/products/ hawkboard-lite
- 7. http://www.innovatesolutions.net/products/ am1808-som-module
- 8. http://focus.ti.com/docs/prod/folders/print/ am1808.html
- 9. http://ttssh2.sourceforge.jp/
- 10. http://kin.klever.net/pumpkin/
- 11. http://code.google.com/p/hawkboard/ downloads/list