MD8710 универсальная платформа для мобильных медицинских приложений

Одной из наиболее актуальных задач современной медицины является наблюдение за состоянием пациента, как в условиях стационара, так и удаленное, на дому. До настоящего времени такие задачи решались с использованием большого количества микросхем для реализации аналоговых и цифровых каналов обмена данными и достаточно сложной схемотехники для входных и выходных аналоговых блоков. Новая мобильная медицинская платформа (Mobile Medical Platform) MD8710 компании Infineon позволяет создать однокристальную высокопроизводительную систему повышенной надежности за счет процессора с ядром Cortex-R4 с графическим пользовательским интерфейсом, сложными алгоритмами сбора и обработки данных. MD8710 обладает широкими коммуникационными возможностями благодаря интерфейсам USB и Bluetooth.

Андрей САМОДЕЛОВ Andrew.Samodelov@mart.ru

Общее описание MD8710

Микросхема MD8710 представляет собой высокоинтегрированную систему на кристалле (SoC) для сбора и обработки данных в медицинских и промышленных приложениях.

В состав МD8710 входит мощный процессор с ядром реального времени ARM Cortex-R4 (рис. 1) в качестве главного управляющего

Отладочный VIC-порт ЕТМ-интерфейс Модуль ARM 🖁 Арбитр Ядро выборки интерфейс ТСМ Модуль tex-R защиты памяти Кэш Кэш инструкций Ведущий АХІ-интерфейс

Рис. 1. Ядро Cortex-R4

блока, а также подсистема электропитания РМU, блок обработки прерываний, контроллер DMA, сторожевой таймер и блок проверки целостности системы.

Аналоговая подсистема MD8710 способна создавать стимулирующие сигналы и анализировать ответ на них и, благодаря объединению стимуляции и измерений, подходит для комплексной импедансной спектроскопии. Высокоимпедансные входы поддерживают обычные для медицины методы измерения, включая фотодатчики.

Наличие в MD8710 высокопроизводительной аналоговой подсистемы позволяет рекомендовать ее для использования в системах сбора и обработки аналоговых сигналов. Микросхема имеет два независимых 16-разрядных АЦП, фильтры Найквиста и два конфигурируемых ОУ в каждом канале АЦП, а также два независимых 16-разрядных ЦАП с интегрированными фильтрами Найквиста и выходными буферами. Четыре входа вспомогательного АЦП позволяют наблюдать за дополнительными аналоговыми сигналами, например за параметрами окружающей среды (освещенность, температура, атмосферное давление, нагрев и т.п.).

Беспроводное и проводное соединение для обмена данными и управления обеспечивается встроенным полнофункциональным Bluetooth-модулем и USB 2.0 ОТG интерфейсом. В качестве дополнительных интерфейсов можно использовать I²C, SPI, UART и SWI.

Встроенный блок управления электропитанием (РМU) позволяет получать все необходимые напряжения от одного внешнего источника питания. Блок РМU можно использовать для экономии энергии и реализации сценариев выхода из спящего режима, а также для зарядки аккумуляторов и контроля их состояния.

Дополнительно MD8710 имеет контроллер дисплея с базовыми функциями аппаратного ускорения, который поддерживает матричные ЖКИ- и OLED-дисплеи.

Усилитель, работающий в классе D, служит оконечной ступенью аудиоподсистемы.

Модули ШИМ можно использовать, например, для управления фоновой подсветкой ЖКИ или для обслуживания других функций цифро-аналогового преобразования.

Области применения		Стимуляция с высоки м разрешением (ЦАП)	Измерения с высоким разрешением (АЦП)	Многочастотный медицинский анализ	Многоканальный медицинский анализ	Оптический анализ (свето-/фотодиоды)	Выход с ШИМ-управлением	чными oth	ными	Цветной графический дисплей	й и звуковой	C L BIĞ
		Стимуляция разрешение	Измерени разрешен	Многочастотный медицинский ана	Многоканальный медицинский ана	Оптически (свето-/ф	Выход с ШИМ-уп	Обмен данными по Bluetooth	Обмен данными по USB	Цветной г дисплей	Тональный выход	Защищенный интерфейс
		Прос	рессиона	льное пр	именени	ie						
Инструментарий для исследования крови	*	*	*	+	+	*	*		*	*	*	+
Приборы для биоаналитических измерений	*	*	*	+	+					*		
Электрохимическая импедансная спектроскопия	*	*	*	+	+	*	*	+	*	*	*	
экг, ээг		*	*	+	*				*	*	*	
Стационарные системы наблюдения за пациентами		*	*	+	*	*	*		*	*	*	+
Портативные системы наблюдения за пациентами	*	*	*	+	*	*	*	+	*	*	*	
Профессиональная аппаратура удаленного медицинского обслуживания нового поколения	*	*	*	*	*	*	*	*	*	*	*	*
			Бытово	е примен	ение							
Глюкометры	*	*	*	+			*	+	*	*	*	
Пульсоксиметры	*		*	+		*		+	*	*	*	
Мониторы сердечного ритма (ЭЭГ)	*		*	+		*	*	+	*	*	*	
Многофункциональные домашние медицинские мониторы	*	+	*	+	+	*	+	+	*	*	*	+
Мониторы динамических нагрузок для спорта и оздоровления	*	+	*	+	+	*	+	+	*	*	*	+
Аппаратура удаленного медицинского												

Примечание. Значком «*» отмечены стандартные применения MD8710,

обслуживания на дому нового поколения

а значком «+» — обусловленные уникальной комбинацией ее периферийных модулей и функциональных возможностей.

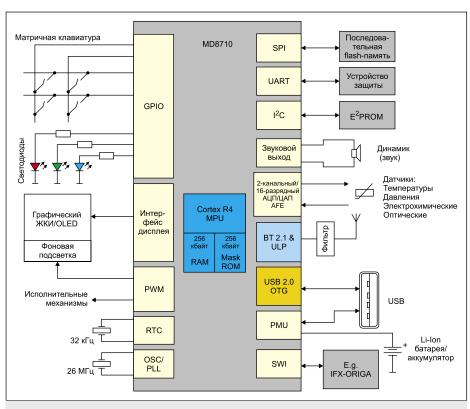


Рис. 2. Типовая схема включения МD8710

Все перечисленные особенности позволяют создать на базе MD8710 широкий спектр приложений бытового и профессионального уровня, часть из которых приведена таблице 1.

На рис. 2 приведена типовая блок-схема включения MD8710, обеспечивающая использование всех ее модулей.

Ключевые особенности MD8710

Подсистема процессора

Центральный процессор имеет ядро ARM Cortex-R4 с 256 кбайт ПЗУ, 128 кбайт ОЗУ и 128 кбайт разделяемой памяти, сдвоенный

16-канальный контроллер DMA, контроллер прерываний, способный обрабатывать до 256 источников прерываний, и JTAG-интерфейс для программирования и отладки.

Блок диагностики

В этот блок входят: модуль волнового синтеза, 2-канальный 16-разрядный ЦАП, программируемый источник тока, два основных 16-разрядных АЦП, один вспомогательный АЦП с 4 входами, усилитель с программируемым коэффициентом усиления, операционный усилитель с 4 входами, выход ИОН и датчик температуры.

Модуль Bluetooth

В состав модуля входит интегрированный РЧ-приемопередатчик, поддерживающий стандарт ВТ V2.1. Максимальная скорость обмена данными составляет 3 Мбод. Модуль поддерживает простое безопасное соединение, имеет функцию мультилинка и аппаратную поддержку режима ULP (Dual Mode).

Блок управления питанием (РМU)

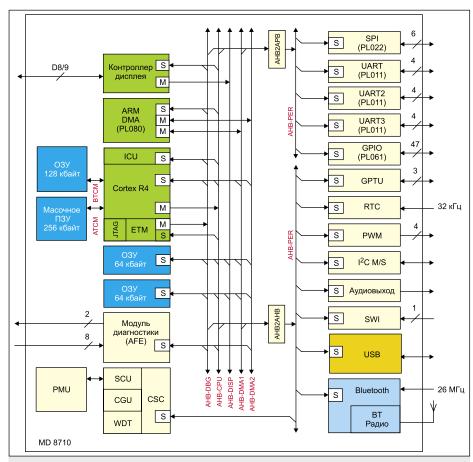
Блок PMU состоит из повышающего и понижающего DC/DC-преобразователей, системы контроля напряжения питания, интеллектуального зарядного устройства для Li-Ion аккумуляторов и реализует функцию сброса при подаче напряжения питания (POR).

Контроллер дисплея

Этот контроллер поддерживает цветные и монохроматические матричные дисплеи (например, ЖКИ, OLED). Для обмена данными используются: последовательный интерфейс МІРІ DBІ-С и параллельный интерфейс МІРІ DBІ-В (8/9 разрядов), RGВ-интерфейс МІРІ DBІ-С (16/18 разрядов). Максимальное поддерживаемое разрешение — 1024×1024 пикселей. В модуле реализованы базовые функции аппаратного 2D-ускорителя.

Цифровые интерфейсы обмена данными

Для обмена данными в цифровом виде имеются: интерфейс USB 2.0 Fullspeed с функциональностью OTG, 3-канальный UART, один канал SPI с 3 линиями выборки микросхемы (CS) и режимами «ведущий» и «ведомый», интерфейс I²C, поддерживающий стандартный и скоростной режим, а также интерфейс SWI, поддерживающий устройства идентификации IFX (например, IFX-ORIGA).


Вспомогательная периферия

Дополнительно имеется выход аудиоусилителя, работающего в режиме Class D, четыре выходных канала с ШИМ, часы реального времени (RTC), три блока таймеров общего назначения и 47 каналов GPIO.

Преимущества использования микросхемы MD8710, основанные на описанных ключевых особенностях, приведены в таблице 2.

Таблице 2. Преимущества решений на базе MD8710

Преимущества	Ключевые особенности, обеспечивающие данное преимущество
Уменьшение стоимости систем за счет высокой интеграции	 Интегрированный модуль РМU уменьшает количество внешних компонентов (пассивных элементов и даже дополнительных микросхем РМU). Интегрированный блок Bluetooth I/F обеспечивает беспроводной обмен данными и уменьшает количество дополнительных внешних микросхем. Многофункциональный конфигурируемый блок аналогового ввода/вывода минимизирует количество внешних компонентов. 16-канальный сдвоенный контроллер DMA. Контроллер прерываний, способный обрабатывать до 256 источников прерываний. JTAG-интерфейс для программирования и отладки.
Гибкая архитектура позволяет проводить эффективную разработку и повторно использовать отлаженные модули ПО	 Универсальный, высокопроизводительный аналоговый блок, поддерживающий широкий спектр приложений. Большое количество различных интерфейсов. Стандартная архитектура процессора. MD8710 можно использовать для разнообразных изделий, позволяющих пользователю повторно использовать и распространять результаты разработки и уменьшать ее общую стоимость. Затраты на исследования и разработку можно распределить между различными приложениями и поколениями продукции.
Уменьшение рисков, связанных с разработкой, и уменьшение затрат на разработку	 Высокий уровень функциональной интеграции. Высокая производительность и гибкость аналогового блока делает ненужной разработку сложных аналоговых схем. Стандартная архитектура процессора, поддерживаемая всеми основными ОС реального времени, позволяет повторно использовать существующее и проверенное ПО и получить доступ к ПО сторонних производителей.

Рис. 3. Блок-схема MD8710

Описание MD8710

На рис. 3 представлена блок-схема MD8710. Обозначения, использованные на блок-схеме, приведены в таблице 3.

Подсистемы аналоговой обработки сигнала (AFE)

Микросхема MD8710 имеет 2 независимых канала 16-разрядных АЦП и 2 независимых выходных канала 16-разрядных ЦАП, они предназначены для высокопроизводительных приложений сбора, обработки и генерации аналоговых сигналов (рис. 4). На ЦАП каждого канала можно циклически пересылать

данные из таблицы волн с 102416-разрядными записями. Для передачи данных между каналами ввода/вывода АЦП/ЦАП и основной системой используются буферы FIFO. Два конфигурируемых ОУ в каждом канале АЦП обеспечивают возможность предварительной обработки аналогового сигнала, например, могут работать в качестве трансимпедансных усилителей при измерении силы тока. Для расширения интеграции системы MD8710 имеет 12-разрядный вспомогательный АЦП с 4 мультиплексируемыми внешними входами, а также датчик температуры, выход средней точки напряжения питания и выход ИОН с напряжением 2,5 В.

Таблица 3. Обозначения, использованные на блок-схеме MD8710

Сокра-					
щение	Расшифровка	Перевод			
SCU	System Control Unit	Блок системного управления			
PMU	Power Management Unit	Блок управления электропитанием			
ICU	Interrupt Control Unit	Блок управления прерываниями			
DMA	Direct Memory Access	Контроллер прямого доступа к памяти			
CGU	Clock Generation Unit	Блок тактирования и синхронизации			
BT	Bluetooth				
AFE	Analog Frontend	Блок аналогового ввода/вывода			
USB	Universal Serial Bus	Универсальная последовательная шина			
UART	Universal Asynchronous Receiver Transmitter	Универсальный асинхронный приемопередатчик, УАРТ			
MLAHB	Multi Layer Advanced High performance Bus	Многоуровневая расширенная высокопроизводительная шина			
SPI	Synchronous Peripheral Interface	Синхронный периферийный интерфейс			
GPIO	General Purpose Input/Output	Линии ввода/вывода общего назначения			
PWM	Pulse Width Modulation	Широтно-импульсная модуляция			
DCC	Display Content Controller	Контроллер дисплея			
AOUT	Audio Output	Аудиовыход			
RTC	Real Time Clock	Часы реального времени			
GPTU	General Purpose Timer Unit	Таймер общего назначения			
I ² C	Inter-Integrated Circuit	Межблочный интерфейс			
SWI	Single Wire Interface	Однопроводной интерфейс			
ETM	Embedded Trace Macro	Встроенные ячейки трассировки			

Аналого-цифровой преобразователь (АЦП)

Блок АЦП состоит из двух идентичных, независимо программируемых каналов сигма-дельта АЦП с быстродействием 500 kSPS при разрешении 12 разрядов (0-100 кГц) и 1 kSPS при разрешении 16 разрядов (0-500 Гц), с программируемым прореживающим фильтром и дифференциальной нелинейностью ±1 LSB.

Входной усилитель АЦП содержит интегрированный помехоподавляющий фильтр с полосой пропускания >100 кГц по уровню -3 дБ и программируемым коэффициентом передачи 1, 2, 5, 10. Максимальное входное напряжение в дифференциальном режиме — $\pm 2,5$ В (пиковое значение), в несимметричном — $\pm 1,25$ В (0–2,5 В).

Каждый канал АЦП MD8710 снабжен двумя ОУ, которые можно использовать как инвертирующий, неинвертирующий и трансимпедансный усилитель. Коэффициент усиления с разомкнутой петлей ОС >80 дБ при полосе пропускания >1 МГц. Входная емкость ОУ не превышает 10 пФ, ток утечки по входу — не более 150 пА. Диапазон входного и выходного напряжения от 0,15 до V_{ddp} –0,15 В. Максимальный выходной ток составляет 1 мА, максимальная емкость нагрузки — 200 п Φ .

Цифро-аналоговый преобразователь (ЦАП)

Блок ЦАП состоит из двух идентичных, независимо программируемых каналов сигма-дельта ЦАП с быстродействием 500 kSPS при 12-разрядном разрешении (0−100 кГц) и 1 kSPS при 16-разрядном разре-

123

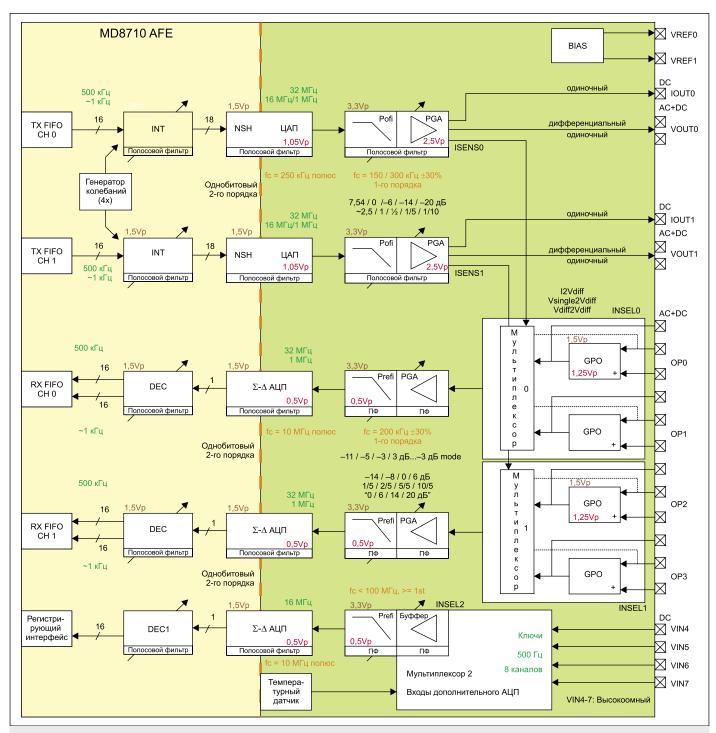


Рис. 4. Аналоговая часть и цифровые фильтры АFE

шении (0–500 Гц), с интегральной нелинейностью ± 1 LSB. Для каждого канала имеется волновая таблица с 1 К отсчетов, восстанавливающий фильтр с полосой пропускания $100~\mathrm{k}\Gamma\mathrm{q}$ (–3 дБ) и программируемый интерполяционный фильтр.

Максимальное выходное напряжение в дифференциальном режиме — $\pm 2,5$ В, в однополярном — $\pm 1,25$ В, в общем режиме — 1,5 В. Программируемое ослабление выходного сигнала — 1,2,5,10. Выходной драйвер может обеспечить ток 1 мА (максимум 10 мА) при емкости нагрузки 50 пФ.

Токовый выход ЦАП может обеспечить выходной ток до ± 20 мА (биполярный, относительно GND и $V_{\rm DDIO}$) при полосе пропускания 1 кГц (–3 дБ). Минимальный импеданс нагрузки в режиме малого сигнала составляет 12,5 кОм.

Дополнительные аналоговые функции

Вспомогательный дельта-сигма АЦП с 4 мультиплексируемыми входами предназначен для измерения дополнительных аналоговых величин и имеет производительность 1 kSPS при 12-разрядном разрешении с диапа-

зоном входного сигнала $\pm 1,25$ В в дифференциальном режиме и 0–2,5 В — в однополярном режиме. Входной ток утечки не превышает 10 нА, входная емкость — не более 10 пФ. Источник опорного напряжения с напряжением 2,5 В $\pm 3\%$ имеет отдельный выход с током нагрузки до 10 мА тока нагрузки. Встроенный датчик температуры позволяет измерять температуру в диапазоне -20...+110 °C.

Примеры использования АFE

На рис. 5 и 6 показаны примеры систем на базе MD8710.

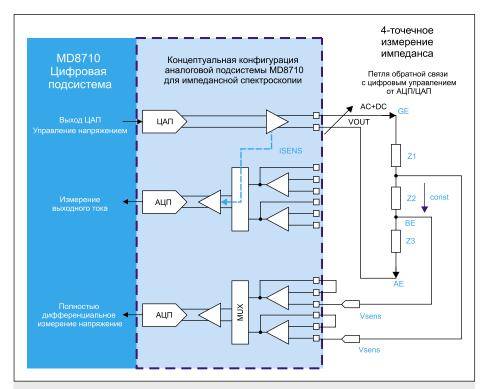


Рис. 5. Концептуальная конфигурация для импедансной спектроскопии

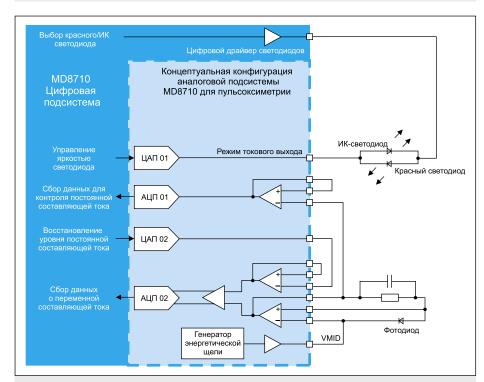


Рис. 6. Концептуальная конфигурация для пульсоксиметрии

Процессорная подсистема MD8710

Процессор

MD8710 имеет мощный 32-разрядный микропроцессор с ядром ARM Cortex-R4F. Его характеристики: тактовая частота — до 100 МГц, производительность до 150 MIPS, 16- и 32-разрядные инструкции Thumb, малое время обработки прерываний, немаскируемое прерывание, обработка множества данных за одну инструкцию (SIMD) для DSP-инструкций, блок целочисленной арифметики со встроенной логикой ICE-RT (рис. 7).

Для связи ядра процессора с памятью используется интерфейс тесно связанной памяти (памяти с непосредственной связью, ТСМ), со специализированной шиной, подобной шине, используемой для работы с кэш-памятью. Скорость доступа к ТСМ сравнима со скоростью доступа к кэшпамяти. Различие между кэш-памятью и ТСМ проявляется в высокопроизводительных приложениях реального времени и при обработке прерываний (IRQ): для расчета времени доступа к кэш-памяти всегда необходимо рассматривать наиболее неблагоприятный сценарий обращения, в то время как обращение к коду/данным, расположенным в ТСМ, жестко определено (детерминировано). Память ТСМ не кэшируется, поэтому является идеальным вариантом памяти для приложений реального времени с особо жесткими требованиями к временным характеристикам. Базовый регистр доступа к ТСМ является физическим, а не виртуальным регистром, следовательно, адреса ТСМ можно картировать в нужный диапазон виртуальных адресов с помощью модуля управления памятью (ММU).

Память первого уровня (L1) гарвардского типа снабжена интерфейсом ТСМ с поддержкой функций контроля четности и коррекции ошибок и дополнительными функциями контроля четности и ЕСС для всех блоков ОЗУ и содержит 128 кбайт тесно связанного ОЗУ и 256 кбайт тесно связанного ПЗУ.

Память второго уровня (L2) имеет 32-разрядный ведущий интерфейс АНВ и 32-разрядный ведомый интерфейс АНВ к области ТСМ ОЗУ.

Кроме того, процессор имеет порт JTAG-отладчика, интерфейс трассировки к CoreSight ETM-R4 с 4 кбайт встроенной памяти, блок измерения производительности (PMU), интерфейс шины АНВ и векторизованный контроллер прерываний (VIC).

Модуль контроллера прерываний (ICU)

Модуль ICU может обрабатывать до 256 источников прерываний, имеет 2 выхода (FIQ, IRQ), программируемых отдельно для каждого прерывания, 15 уровней приоритета и регистр стека прерываний, поддерживающий обработку вложенных прерываний.

Контроллер DMA (DMAC)

Модуль DMAC предназначен для разгрузки CPU от операций обмена между клиентами на шине и состоит из шести каналов DMA, каждый из которых поддерживает двунаправленный обмен данными и запросы на одиночный и пакетный прямой доступ к памяти и имеет 16 линий запросов от периферии. Поддерживается обмен данными памятьпамять, память-периферия, периферияпамять и периферия-периферия.

Поддержка режима рассеяния/сборки DMA (необходимого в случае, если область, к которой осуществляется прямой доступ, не представляет собой непрерывное адресное пространство) реализована посредством связанных списков.

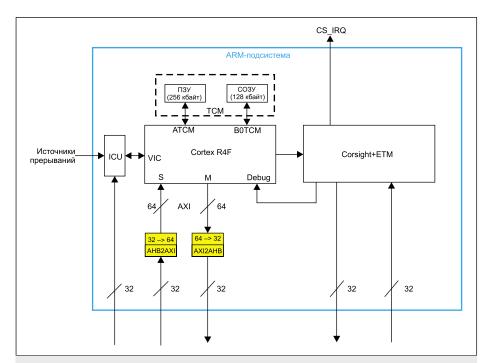


Рис. 7. Блок-схема и системная интеграция CPU

Шина АНВ имеет ведомый и два ведущих программируемых DMA-интерфейса.

При обмене данными возможен инкрементирующий или неинкрементирующий режим адресации для источника и приемника данных и программируемый размер пакетов.

Многоуровневая высокоскоростная шина АНВ

Пять основных и две вспомогательные шины АНВ (рис. 8) объединены в высокопроизводительную систему с трехуровневой архитектурой АМВА. Матрица системной шины АНВ (MLAHB) состоит из пяти шин: шины отладочной подсистемы (AHB-DBG); шины ядра Cortex-R4 (AHB-CPU); шины контроллера дисплея (AHB-DISP) и двух шин контроллера DMA (AHB-DMA1 и AHB-DMA2). С помощью моста АНВ2АНВ матрица системной шины АНВ соединена с вторичной шиной АНВ для периферии, основанной на АНВ (АНВ_РЕR), а с помощью моста АНВ2АРВ с вторичной шиной для периферии, основанной на APB (APB_PER). Каждая система шин имеет независимый тактовый генератор и собственную систему сброса.

Интегрированная подсистема Bluetooth

Подсистема Bluetooth (рис. 9), совместимая с режимом Dual Mode, поддерживает классический стандарт Bluetooth 1.2, 2.0 и 2.1 (готовится поддержка ULP/Dual mode), функции HCI Stack, RFCOMM, HID, SPP и обеспечивает скорость обмена данными 1, 2 и 3 Мбит/с.

Стек HCI соответствует BT1.2, 2.0 и 2.1 +EDR, Ultra-Low Power BT (Wibree) и поддерживает AFH (Adaptive Frequency Hopping) и ACL (Asynchronous Connectionless Link). При двух параллельных соединениях сохраняется видимость для третьего Bluetooth-устройства. По умолчанию команды Park/Hold и широковещание не поддерживаются.

Выходная мощность передатчика (Тх) составляет +6 дБм, максимальная чувствительность приемника (Rx) — -88 дБм (BDR с 0,1% BER) и -90 дБм (EDR с 0,1% BER).

Основные функции модуля записаны во встроенное ПЗУ. Вспомогательное ОЗУ позволяет обновлять ПО без остановки работы приложения. После завершения приема данных в ОЗУ процессор проверяет их целостность и в случае подтверждения правильности приема записывает их в ПЗУ. После переинициализации модуль готов к работе по новым алгоритмам.

На рис. 10 показан пример подключения внешних компонентов к модулю Bluetooth.

Модуль USB

Модуль USB соответствует стандарту USB 2.0 и дополнению USB-OTG Rev. 1.3, поддерживает режимы Device, Host (full speed, 12 Мбит/с) и HID (Human Interface Device) и имеет 8 Host-каналов, 4 конечные точки для режима Device, а также ОЗУ для буфера FIFO 2048×32. В режиме Host или OTG A-Device требуется дополнительный источник питания с напряжением 5 В. Линию $V_{\it BUS}$ можно использовать для зарядки аккумуляторов. В режиме OTG реализовано определение V_{BUS} и ID и поддержка протоколов Host Negotiation и Session Request.

На рис. 11 показан пример использования USB-модуля MD8710.

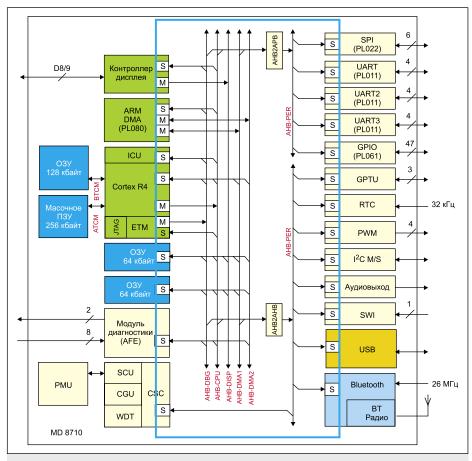


Рис. 8. Архитектура шины АНВ MD8710

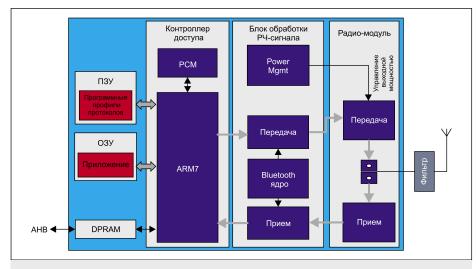


Рис. 9. Блок-схема подсистемы Bluetooth

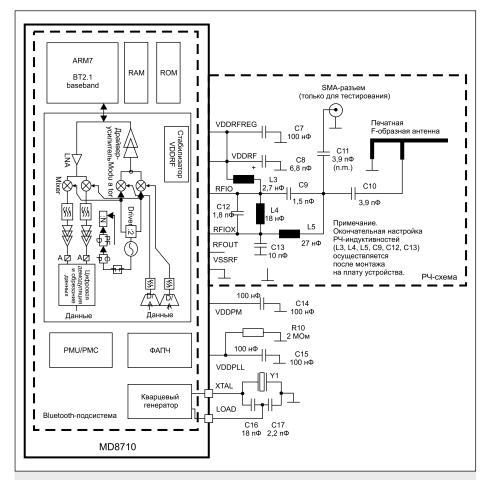


Рис. 10. Схема включения модуля Bluetooth

Система управления электропитанием (РМU)

Модуль РМU (рис. 12) создает основные напряжения для работы MD8710, используя широкий набор источников питания с минимальным количеством внешних компонентов. Он активирует последовательность включения и выключения питания и управляет ею в зависимости от внешних условий.

Для питания микросхемы можно использовать любые внешние источники постоянного тока с напряжением 4,5-20 B, Alkaline/NiMH батареи с напряжением 2-3,2 В или Li-Ion аккумуляторы с напряжением 3,1-4,2 В. Для Li-Ion аккумуляторов имеется встроенное зарядное устройство с защитой от бросков напряжения, ограничением тока заряда, схемой контроля заряда батареи и функцией поддерживающего заряда постоянным током.

Таблица 4. Поддерживаемые типы источников питания

	Источники	Напря	Возмож-		
	питания	мини- мальное	номи- нальное	макси- мальное	ность зарядки
	Li-Ion/Li-Poly аккумулятор	3,1	3,7	4,2	Да
	2 батарейки AAA (Alkaline, Lithium)	2	3	3,2	Нет
2	? аккумулятора AAA (NiCd, NiMH)	2	2,4	3,2	Нет
	Внешний блок питания	4,5	5	20	Нет

В таблице 4 приведены параметры возможных источников питания для MD8710.

Основные напряжения для питания микросхемы вырабатываются двумя DC/DCпреобразователями с выходным током до 500 мА: понижающий DC/DC-преобразователь на 1,5 В (с подстройкой 1-1,5 В) служит для питания цифрового ядра; повышающий/понижающий DC/DC-преобразователь на 3,3 В (с подстройкой 2,8-3,5 В) для линий I/O и аналоговой периферии. Стабилизаторы имеют режимы PWM и PFM для запуска и энергосбережения. Для питания внешних аналоговых схем, чувствительных к качеству питающего напряжения, имеется LDO-стабилизатор на 1,5 В. Второй LDOстабилизатор на 1,5 В с ультранизким энергопотреблением служит для питания RTC.

Система имеет специальную схему с программируемыми порогами для контроля напряжений питания аналоговых и цифровых подсистем и два дополнительных входа для контроля внешних напряжений, выбираемых пользователем.

Система РМU обеспечивает низкое энергопотребление в режиме ожидания и очень маленький потребляемый ток (<20 мкА) в спящем режиме (активны RTC и Wakeup).

Генератор тактовых частот

Блок генератора тактовых частот (рис. 13) формирует тактовые частоты для всех модулей MD8710 и предоставляет возможность выбрать конфигурацию для тактирования CPU и периферийных блоков, чтобы оптимизировать потребляемую мощность в различных вариантах работы.

Блок генератора тактовых частот состоит из двух высокочастотных блоков тактирования СРU и системной шины, двух высокочастотных блоков тактирования DC/DCпреобразователей и 13 среднечастотных блоков тактирования отдельных периферийных модулей.

Базовая частота может быть равна 26, 240 или 480 МГц, в зависимости от требований приложения. Частота 240 МГц необходима только в том случае, если используется USB-интерфейс или выходной ток одного из DC/DC-преобразователей больше 100 мА.

В каждом блоке тактирования имеется мультиплексор для выбора источника тактовой частоты и программируемый делитель. Последовательность частот тактирования

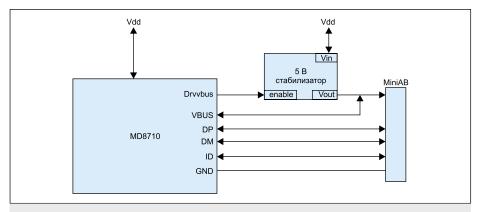


Рис. 11. Модуль MD8710 как устройство USB OTG A-Device

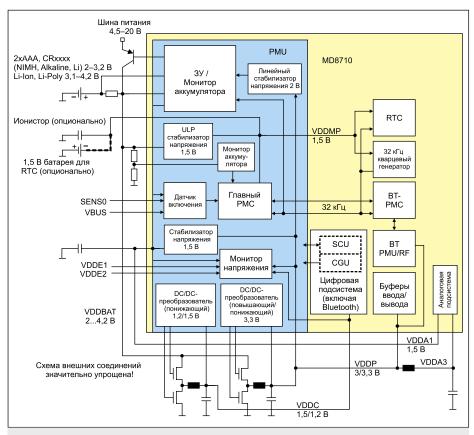


Рис. 12. Блок-схема PMU

можно выбрать индивидуально для CPU и основной периферии, в зависимости от требований приложения. Тактовые частоты можно изменять в процессе работы, поскольку при смене частоты драйвер формирует бесшовную последовательность импульсов.

Для уменьшения потребляемой мощности тактирование неиспользуемых периферийных модулей можно отключать. Еще большего снижения энергопотребления, например в ждущем режиме, можно достичь, используя в качестве источника тактовой частоты для СРU и периферии 32-кГц генератор RTC.

Контроллер графического дисплея

Для обмена данными с дисплеем контроллер имеет высокоскоростной 8/9-разрядный параллельный двунаправленный интерфейс с поддержкой МІРІ DВІ 2.0 и программируемыми временными интервалами и синхронный последовательный интерфейс (SSI), обеспечивающий полностью дуплексные операции и имеющий гибкий формат данных (биты, порядок сдвига, полярность синхроимпульсов, временные параметры). Скорость обмена задается до 26 Мбод с помощью специального генератора.

Контроллер (рис. 14) позволяет полностью или частично обновлять экран дисплея, имеет функции клиппирования и альфакоррекции и графический ускоритель для рисования линий, закраски блоков и подсветки отдельных битов с расширением цвета (например, для шрифтов) и поддерживает стан-

дартные и сглаженные растровые шрифты (color expansion). В зависимости от объема памяти и конфигурации разрешение дисплея может быть до 1024×1024 пикселей.

Периферийные модули

Часы реального времени (RTC)

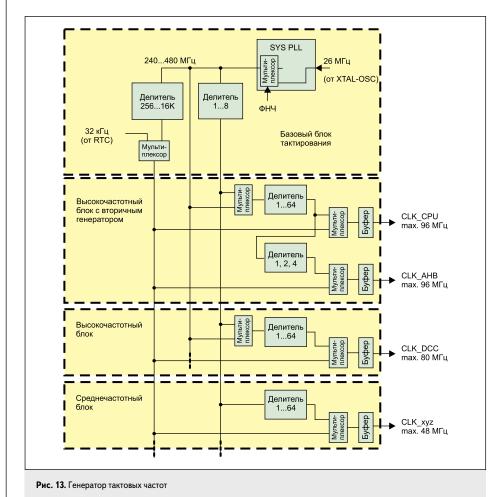
Модуль RTC состоит из двух перезагружаемых таймеров — T14 (16 разрядов) и CNT (38 разрядов) — с функциями будильника. Он имеет малую потребляемую мощность и снабжен системой обнаружения сбоев. Оба таймера можно объединить в 54-разрядный таймер.

Модуль RTC способен работать в синхронном или асинхронном (изолированном) режиме, не перерывая выполнения операций в режиме Suspend. Функция тайм-аута для линии прерывания уменьшает энергопотребление в режиме питания от резервного источника.

Аудиовыход (АОИТ)

Аудиоподсистема поддерживает аудиопотоки с дискретизацией 8 kSPS и совместима с DMA. Оконечной ступенью аудиоподсистемы служит усилитель с выходной мощностью 300 мВт, работающий в классе D.

Универсальный асинхронный последовательный интерфейс (UART)


Модуль UART с полностью программируемыми характеристиками последовательного интерфейса, программируемым генератором скорости обмена и поддержкой DMA обеспечивает программное переключение входа/выхода UART или IrDA SIR (с ENDEC). Для уменьшения количества прерываний CPU имеет FIFO-буферы на передачу (32×8) и прием (32×12), а также программное отключение FIFO для 1-байтовых посылок.

Модуль поддерживает стандартные дополнительные биты асинхронного обмена данными (start, stop и parity), модемные функции управления (CTS, DCD, DSR, RTS, DTR и RI) и аппаратную функцию flow control.

Модуль UART имеет независимое маскирование прерываний от FIFO-передатчика, FIFO-приемника, по тайм-ауту при приеме, по состоянию модема и при возникновении ошибок.

Синхронный последовательный порт SSP

Модуль SSP с поддержкой DMA и режимом внутренней самодиагностики позволяет работать в режиме master или slave. В его состав входят: программируемый генератор скорости обмена с предварительным делителем частоты; отдельные FIFO-буферы на прием и передачу шириной 16 бит и глубиной 8 уровней. Выбор типа интерфейса (SPI, Microwire или TI synchronous serial) осуществляется программным путем. Размер кадра данных программируется: от 4 до 16 бит.

Модуль SSP имеет независимое маскирование прерываний от FIFO-передатчика, FIFOприемника и прерываний по переполнению буфера приемника.

Интерфейс I²C

Модуль I^2 С поддерживает режимы master, multimaster и slave и совместим со спецификацией I^2 С version 2.1, январь 2000. Поддерживается также обмен данными в стандартном (0–100 кбод), быстром (0–400 кбод) и высокоскоростном (0–3,4 Мбод) режимах.

Модуль разгружает CPU от выполнения низкоуровневых операций, таких как (де)сериализация данных на шине, генерация стартовых и стоповых условий, прослушивание линий шины в slave-режиме, определение адреса микросхемы в slave-режиме, арбитраж шины в режиме multimaster.

Линии ввода/вывода общего назначения (GPIO)

Микросхема MD8710 имеет 47 индивидуально программируемых линий ввода/вывода общего назначения (31 линия используется совместно с другими периферийными блоками). По умолчанию после сброса все линии сконфигурированы как цифровые входы. Программируемую генерацию прерываний можно конфигурировать как по перепадам, так и по статическим уровням, на любом количестве выводов. Кроме того, есть возможность маскирования битов в направлении чтения или записи, через адресные линии.

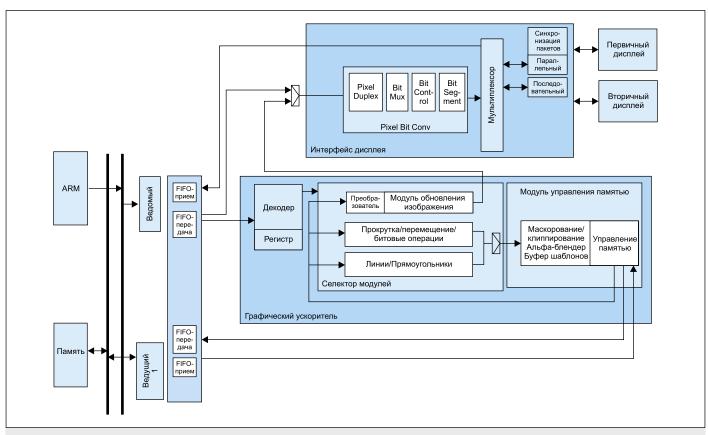


Рис. 14. Блок-схема контроллера графического дисплея

Блок таймера общего назначения (GPTU) Таймеры общего назначения T0 и T1

Таймеры Т0 и Т1 представляют собой 32-разрядные таймеры/счетчики со счетом на возрастание, с максимальной входной частотой fkernel_clk/2 и двумя входными линиями для настройки счета. Таймеры имеют специализированные 32-разрядные перезагружаемые регистры с автоматической перезагружкой по переполнению, которые можно разделить на независимые 8-, 16-или 24-разрядные таймеры с индивидуально перезагружаемыми регистрами. Сигналы переполнения можно использовать для генерации сервисных запросов, выходных сигналов для линий микроконтроллера и событий, запускающих таймер Т2.

Таймер общего назначения Т2

Таймер Т2 представляет собой 32-разрядный таймер/счетчик с двумя 32-разрядными регистрами перезагрузки/захвата, со счетом на возрастание и на убывание, с максимальной частотой входного сигнала fkernel_clk/2. Он может работать в таких режимах, как таймер, счетчик или квадратурный счетчик. Таймер Т2 имеет внешний запуск/останов, режим ждущего мультивибратора и очистку счетчика таймера по внешнему событию. Управление направлением счета осуществляется программно или по внешнему событию. Таймер Т2 можно разделить на два независимых 16-разрядных блока. Сигналы переполнения таймера Т2 можно использовать для запуска таймеров Т0/Т1 и управления выходными линиями.

Перезагрузка счетчика таймера может осуществляться по переполнению, по внешнему событию: нарастающему, спадающему фронту или обоим. Захват может осуществляться по внешнему событию: нарастающему, спадающему фронту или обоим. Захват и сброс таймера может осуществляться по внешнему событию: нарастающему, спадающему фронту или обоим.

Для входной линии свободно назначается функция счета импульсов, перезагрузки, захвата и другие функции триггера в дополнение к входам переполнения от T0 и T1.

Все события таймера Т2 свободно доступны для узлов сервисных запросов.

Модуль широтно-импульсной модуляции (ШИМ)

Модуль ШИМ состоит из четырех независимых каналов ШИМ, каждый из которых имеет программируемый предварительный делитель частоты и обеспечивает программируемый период повторения импульсов, программируемую ширину импульса и генерацию прерывания по фронту выходного импульса.

Однопроводной интерфейс (SWI)

Модуль SWI в режиме ведущего (master) поддерживает нормальный режим обмена

по SWI с максимальной частотой 500 к Γ ц при тактовой частоте ядра 8 М Γ ц и с минимальной частотой 10 к Γ ц при тактовой частоте ядра 16 М Γ ц с кодированием/декодированием инверсии битов. При тактовой частоте ядра 48 М Γ ц возможна работа в высокоскоростном режиме обмена по SWI с частотой от 30 к Γ ц до 3 М Γ ц.

На линиях ввода/вывода модуля установлены подтягивающие резисторы с функцией подключения/отключения.

Модуль SWI имеет поддержку режима DMA. Интерфейс АНВ обеспечивает ширину шины в 32 разряда и повторное использование TOPSPIN-периферии.

Генерация прерываний осуществляется: по срабатыванию триггера FIFO в режиме FIFO flow control, по переполнению буфера RXFIFO в режиме FIFO non-flow control, по освобождению буфера TXFIFO в режиме FIFO non-flow control и при ошибках при приеме (Rx error).

Поддержка разработок

Ознакомительный набор MD8710 Starter Kit

Для быстрого ознакомления с возможностями медицинской платформы MD8710 компания Hitex выпускает набор MD8710 Starter Kit, внешний вид которого показан на рис. 15.

Рис. 15. MD8710 Starter Kit

Примеры готовых приложений позволяют ознакомиться с основными особенностями MD8710. Все примеры приложений запрограммированы в микросхему. Ознакомиться с особенностями их работы можно без использования дополнительного оборудования.

Входящая в комплект ограниченная версия среды разработки Hitex Toolchain for MD8710 позволяет разрабатывать собственное программное обеспечение для этого набора. В любое время ограниченную версию можно обновить до полной. Кроме того, в комплект поставки входит карта памяти, на которую записано ПО, документация и исходные коды демонстрационных приложений.

- В набор MD8710 Starter Kit входит:
- Оценочная плата MD8710 Evaluation board со следующим набором периферии:
 - QVGA цветной ЖКИ-дисплей;
 - динамик, клавиатура (12 клавиш), датчики (температуры, освещения);
 - разъемы для присоединения плат пользовательских датчиков, интерфейсов и т.п. (1 плата присоединена);
 - дополнительный USB-интерфейс (через UART) для отладки.
- USB flash-карта памяти объемом 2 Гбайт с ПО и документацией.
- Отладчик Tantino от компании Hitex.
- Среда разработки HiTOP от компании Hitex. В качестве источников питания для пла-

В качестве источников питания для платы можно использовать: внешний сетевой блок питания; 2 батареи типоразмера AAA; Li-Ion элемент или аккумулятор; шину USB. Кроме того, плата имеет функцию зарядного устройства.

Заключение

Рассмотренная в статье микросхема MD8710 обладает поистине уникальными возможностями применения за счет использования высоконадежного ядра реального времени Cortex-R4 и богатого набора функциональных модулей, обеспечивающих связь микросхемы как с объектом измерения, так и с внешними системами сбора, накопления и обработки данных, а также с аналогичными устройствами, созданными на базе MD8710.

Микросхема MD8710 найдет широкое применение в различных портативных медицинских приборах функциональной диагностики, а также в портативных приборах для электрохимической импедансной спектрометрии, в том числе для определения параметров крови.

Литература

- Infineon Technologies. Innovative medical platform: http://www.infineon.com/cms/en/product/ applications/Medical/Medical_Platform/
- 2. MD8710 Single Chip Medical Platform: http://www.rutronik.com/1747.html
- MD8710 ELWiS-Flyer: http://www.rutronik. com/fileadmin/be_user/components/active/ analog_mixed_signal/Files_MS/Infineon%20 ELWIS%20Medical%20Broschure.pdf
- 4. MD8710 General Presentation: http://www.rutronik.com/fileadmin/be_user/components/active/analog_mixed_signal/Files_MS/eWorld-IFX-MedicalPlatform-Laptop-Presentation-v10.pdf
- MD8710 Preliminary Product Brief: http://www. rutronik.com/fileadmin/be_user/components/ active/analog_mixed_signal/Files_MS/ Paracelsus%20Product%20Brief.pdf
- MD8710 Starter Kit: http://www.ehitex.de/p_ info.php?products_id=621&xID=b547a11779272 bac37302fcbe43c3a90