# Силовые катушки индуктивности компании Murata

# для DC/DC-преобразователей

Масатака НАКАНИВА (Masataka NAKANIWA) В различных типах малогабаритных мобильных электронных устройств, таких как мобильные телефоны, музыкальные проигрыватели, портативные игровые приставки и ноутбуки, в качестве источника питания используются аккумуляторные батареи. Каждое такое устройство содержит несколько преобразователей постоянного напряжения (DC/DC-преобразователей), которые превращают напряжение батареи в напряжение питания каждого из функциональных модулей.

#### Введение

В качестве DC/DC-преобразователей используются различные схемы, но чаще всего в мобильных устройствах эту роль играют импульсные источники питания без гальванической развязки.

Такие источники можно разделить на два класса: DC/DC-преобразователи с модуляцией и демодуляцией, в которых используется катушка индуктивности, и DC/DCпреобразователи с подкачкой заряда, реализуемые в основном на базе конденсатора. В случаях, когда напряжение аккумуляторной батареи колеблется (как, например, у литийионных аккумуляторов в мобильных телефонах), широко применяется DC/DC-преобразователь с модуляцией и демодуляцией, позволяющий поддерживать высокий КПД преобразования напряжения.

Поскольку требования к источникам питания мобильных устройств варьируются в широких пределах в зависимости от реализуемой в устройстве функциональности, требования к напряжению/току ввода/выво-

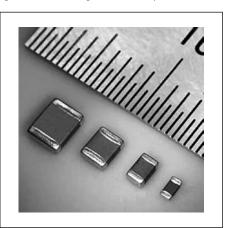



Рис. 1. Внешний вид изделий серии LQM\_P

да и габаритам DC/DC-преобразователей а следовательно, и к размерам и характеристикам катушек индуктивности, входящих в их состав, — также могут различаться.

Компания Murata Manufacturing Co., Ltd. предлагает богатый ассортимент многослойных и проволочных силовых катушек индуктивности для применения в DC/DCпреобразователях различного рода мобильных устройств. Данная статья знакомит читателя с многослойными силовыми катушками Murata серии LQM\_P.

## Серия LQM\_P

Компания Murata выпускает многослойные силовые катушки индуктивности разных размеров — от компактной низкопрофильной катушки LQM18P\_B для встроенных модулей до находящейся в разработке катушки LQM32P\_G, которая предназначена для применения в сильноточных схемах (например, вспышках фотокамер). Наиболее подходящую модель катушки можно выбрать, исходя из требований к ее характеристикам и допустимого объема пространства, который катушка может занимать в DC/DC-преобразователе.

На рис. 1 приведена фотография изделий серии LQM\_P, а в таблице даны их характеристики.

## Серия LQM18P

Самыми малыми поперечными размерами и профилем в серии LQM\_P отличаются катушки серии LQM18P.

В последнее время наблюдается повышенный спрос на малоразмерные и тонкие многослойные силовые катушки индуктивности для компактных модулей, например модулей фотокамер, устанавливаемых в малогабаритные мобильные устройства. Устройства серии LQM18P\_В — это первые в отрасли силовые катушки индуктивности с максимальными размерами 1,6×0,8×0,4 мм. Эти катушки занимают на 63% меньший объем, чем выпущенные ранее малогабаритные низкопрофильные катушки Murata с максимальными размерами  $2 \times 1,25 \times 0,55$  мм.

Общая структурная схема многослойной силовой катушки показана на рис. 2а. С уменьшением поперечных размеров катушки сужается ее внутренний диаметр, а с уменьшением толщины падает индуктив-

Таблица. Характеристики линейки силовых катушек индуктивности серии LQM\_P

| Наименование серии  | Длина и ширина<br>(тип.), мм | Высота<br>(max), мм | Диапазон значений<br>индуктивности, мкГн | Номинальный<br>ток, А | Активное сопротивление<br>(тип.), Ом |
|---------------------|------------------------------|---------------------|------------------------------------------|-----------------------|--------------------------------------|
| LQM32P_G (прототип) | 3,2×2,5                      | 1                   | 1                                        | 3,0* (1 мкГн)         | 0,05 (1 мкГн)                        |
| LQM31P_0            | 3,2×1,6                      | 0,95                | 0,47-4,7                                 | 1,2 (1 мкГн)          | 0,12 (1 мкГн)                        |
| LQM31P_C            | 3,2×1,6                      | 0,55                | 0,47-2,2                                 | 1,1 (1 мкГн)          | 0,14 (1 мкГн)                        |
| LQM2HP_J            | 2,5×2                        | 1,2                 | 1-3,3                                    | 1,5 (1 мкГн)          | 0,09 (1 мкГн)                        |
| LQM2HP_G            | 2,5×2                        | 1                   | 0,47-4,7                                 | 1,6 (1 мкГн)          | 0,055 (1 мкГн)                       |
| LQM2HP_E            | 2,5×2                        | 0,8                 | 0,56                                     | 1,5 (0,56 мкГн)       | 0,06 (0,56 мкГн)                     |
| LQM2MP_G            | 2×1,6                        | 1                   | 0,47-2,2                                 | 1,4 (1 мкГн)          | 0,085 (1 мкГн)                       |
| LQM21P_G            | 2×1,25                       | 1                   | 0,54-4,7                                 | 1,3 (1 мкГн)          | 0,66 (1 мкГн)                        |
| LQM21P_C            | 2×1,25                       | 0,55                | 0,47-2,2                                 | 0,8 (1 мкГн)          | 0,19 (1 мкГн)                        |
| LQM18P_C            | 1,6×0,8                      | 0,55                | 1,8                                      | 0,7 (1,8 мкГн)        | 0,24 (1,8 мкГн)                      |
| LQM18P_B            | 1,6×0,8                      | 0,4                 | 1,5                                      | 0,6 (1,5 мкГн)        | 0,35 (1,5 мкГн)                      |

Примечание. \* Для импульсов тока с амплитудой 3 А и коэффициентом заполнения 20%.

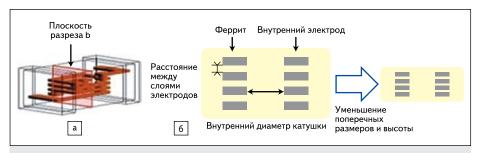



Рис. 2. Внутренняя структура многослойной катушки: а) вид в перспективе; б) вид в разрезе

ность, так как убывает число витков. Чтобы сохранить большую индуктивность и высокие характеристики суперпозиции на постоянном токе (или значение индуктивности при нагрузке на постоянном токе), необходимо развернуть вниз внутренние электроды и увеличить внутренний диаметр катушки или уменьшить толщину внутренних электродов и толщину феррита между электродами (либо расстояние между слоями электродов). Однако если направить внутренние электроды вниз или сделать их тоньше, вырастет активное сопротивление катушки.

Чтобы изготовить силовую катушку индуктивности с малыми поперечными размерами и профилем, которая бы отличалась малым активным сопротивлением и высокими характеристиками суперпозиции на постоянном токе (то есть отсутствием резкого роста индуктивности даже при увеличении тока через катушку), компания Murata разработала новый ферритовый материал и технологический процесс формирования толстого электрода на тонком листе феррита (рис. 26). Устройства серии LQM18P, в которых применены эти новые технологии, а также разработанная компанией оригинальная конструкция магнитопровода, отличаются малым активным сопротивлением (эквивалентным сопротивлению катушки из текущего ассортимента Murata с максимальными размерами 2×1,25×0,55 мм), а также оптимальными характеристиками суперпозиции на постоянном токе.

На рис. 3 показаны характеристики суперпозиции на постоянном токе катушки LQM18PN1R5\_В для трех значений температуры (T=0,4 мм (тах), индуктивность 1,5 мкГн). Так как мобильные устройства (в частности, мобильные телефоны) эксплуатируются в широком диапазоне температур, для них необходимы катушки, индуктивность которых устойчива к изменению температуры. В серии LQM18P стабильность значения индуктивности при изменении температуры достигнута за счет применения уникальной технологии ферритового материала.

На рис. 4 приведены результаты сравнения КПД преобразования напряжения понижающим DC/DC-преобразователем с использованием катушки LQM18PN1R5\_B (T=0.4 мм (макс.), индуктивность 1.5 мкГн) и катушки Murata с малыми поперечными размерами и профилем (максимальные размеры  $2\times1,25\times0,55$  мм, индуктив-

ность 1,5 мкГн). Несмотря на малые размеры катушки LQM18PN1R5\_В (не более  $1,6\times0,8\times0,4$  мм), она позволила достичь столь же высокого КПД преобразования, что и с другой катушкой.

В дальнейшем компания планирует выпуск серии LQM18PA с уменьшенной толщиной (до 0,33 мм) для установки на платы модулей.

#### Серия LQM32P


В этом разделе будет представлена силовая катушка индуктивности LQM32P\_G, имеющая наибольший номинальный ток в линейке LOM P.

В прошлом при конструировании многослойных силовых катушек индуктивности было трудно достичь столь же малого активного сопротивления и высоких характеристик суперпозиции на постоянном токе. Поэтому для сильноточных схем используются главным образом большие проволочные катушки. В настоящее время компания Murata разрабатывает серию многослойных катушек LQM32P\_G повышенной компактности с максимальными размерами 3,2×2,5×1 мм, ориентированную на применение в миниатюрных электронных устройствах.

В серии LQM32P\_G малое активное сопротивление достигается за счет увеличения площади поперечного сечения проводника катушки с помощью оригинальных технологий печати и многослойной укладки. А благо-



Рис. 5. Сравнение результатов анализа магнитного поля



**Рис. 3.** Характеристики суперпозиции на постоянном токе катушки LQM18PN1R5\_B при трех значениях температуры

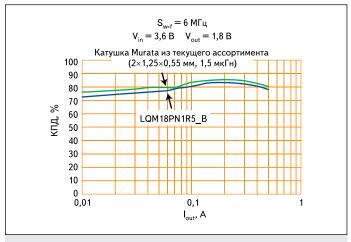
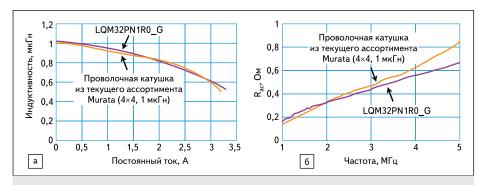




Рис. 4. КПД преобразования напряжения при использовании катушки LQM18PN1R5\_B

32



**Рис. 6.** Сравнение многослойной силовой катушки LQM32PN1R0\_G и проволочной силовой катушки: а) характеристика суперпозиции на постоянном токе; 6) частотная характеристика сопротивления переменному току ( $R_{ac}$ )

даря оригинальной технологии ферритового материала и фирменной конструкции магнитопровода с подавлением насыщения магнитного потока (рис. 5) эта катушка обладает такими же характеристиками суперпозиции

на постоянном токе и малыми потерями, как и на размер бо́льшая проволочная катушка Murata из текущего ассортимента (рис. 6).

Применение новых технологий при создании катушки LQM32PN1R0\_G позволило

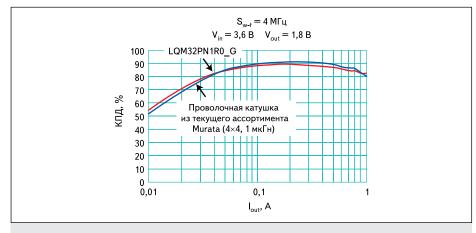



Рис. 7. КПД преобразования напряжения при использовании катушки LQM32PN1R0\_G

достичь такого же высокого КПД преобразования напряжения, как и у проволочной катушки Murata с бо́льшим размером (рис. 7).

К тому же, поскольку обмотка многослойной катушки покрыта ферритом, рассеяние магнитного потока мало и помехи для периферийных цепей можно снизить. По этим причинам многослойные катушки пригодны для плотного монтажа.

Сейчас компания Murata готовит к серийному производству катушку индуктивностью 1 мкГн. В дальнейшем компания планирует расширить ассортимент номиналов индуктивности.

#### Заключение

Требования к DC/DC-преобразователям мобильных устройств варьируются в широких пределах в зависимости от устройств и модулей, которые они питают. Соответственно, различаются и требования к размерам и характеристикам силовых катушек индуктивности, входящим в состав этих преобразователей.

Компания Murata предлагает многослойные силовые катушки индуктивности с различными размерами и характеристиками, пригодные для реализации широкой гаммы DC/DC-преобразователей.

В дальнейшем компания планирует увеличить ассортимент размеров силовых катушек индуктивности, чтобы дать клиентам возможность выбрать подходящую катушку для DC/DC-преобразователя любого мобильного устройства. Одновременно компания будет работать над улучшением характеристик катушек в целях дальнейшего снижения энергопотребления устройств.